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OHMIC EFFECTS IN QUASIOPTICAL RESONATORS

I. Introduction

The quasioptical gyrotron (QOG) has been under investigation at NRL for several years
as a potential source of high-power radiation at frequencies above 100 GHz for electron
cyclotron resonance heating (ECRH) of fusion plasmas.!' 2 * 4 An integral part of the QOG
1s the resonator. which traps some of the radiation emitted by the electron beam, allowing
the radio frequency (rf) fields to grow to the large values necessary for efficient extraction of
energy from the beam. The QOG resonator sufers josses due to diffraction of the radiation
around the outer edge of the resonator mirrers as well as the finite conductivity of the
mirror surfaces. Clearly, 1t is imperative to understand each of these loss mechanisms in
order to understand the operation of the QOG experiments. This note addresses the ohmic
losses in the resonator. deriving expressions for the electric field in the resonator. the ohmic
quahty factor (Qq). the ohmic heating density (pg). the total ohmic power ( Py) dissipated
in the resonator mirrors, and the temperature rise of the mirrors. The derived formulae are
then applied to the current design of the cavity to be utilized in the NRL induced resonance

electron cyclotron (IREC') maser experiment.

II. Cavity Fields

The resonator considered here consists of the Fabry-Perot-tvpe open resonator shown
in Fig. 1. The spherical cavity mirrors form an azimuthally symmetric resonator about
the cavity (y') axis, which is offset by an angle 6 from the y-axis as showrn in Fig. 2. The
angle 6 is used in ithe QCG literature,® however, in the IREC maser literature® the angle
¥ between the resonator (y’) and the electron beam (z) axes is typicatly used. The mode
structure and stability of this type of resonator is discussed by Yariv’ who finds that the

electric field of the transverse electric and magnetic (1EM,, ;) modes of the travelling

Manuscript approved August 22, 1990
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Figure 1: Schematic diagram of the quasioptical gyrotron experiment.
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Figure 2: Giieutation of the resonator (y')-axis with respect to the electron beam (z)-axis.




wave in the cavity may be expressed as
E = zE' (1)

where the physical electric field is obtained by taking the real part of E, and

' 12+ 12
E; (zy, 2 t) = Eoi _wou H, ( Ve )Hn (_‘/__22 >exp{_( 2 )¥

2 w (y') wi (y') wi (y') wi (y') |

X exp {—z [k (y'-{—w) —wit
! 2R.(¥) )

—(m+n + 1) arctan (é’-')]} (2)

2

where H,, is a Hermite polynomial of order m, w, is the radiation beam waist,

wi(y) = wl (1+4%/22), (3)

R,(y) = y(1+22/4?), (4)
_omup, dfl4g 1z

2 = 3 —§<‘1—_—g) ) (5)

R, is the radius of curvature of the radiation wavefront, k is the wave number, A is the
wavelength and w is the angular frequency of the radiation, d is the resonator mirror
separation and ¢ = 1 — d/R,, where R, is the mirror radius of curvature, which is assumed
equal to the curvature of the radiation wavefront at the mirror. The electric field of the
standing wave in the resonator is obtained by adding the two oppositely directed travelling

waves, yielding

ot = Bty (85 1. (255) o -

w (y w (y') w (y w} (y')

X exp {z [wzt + (m 4+ n + 1) arctan (%)]}
z? + 2" -
X cos [k; (y' + —-—-—-(2Rw (y'))) ~ 1-2-] , (6)

where the {7 /2 term in the cosine is necessary to satisfy the boundary conditions at the

resonator mirrors.




Of particular interest is the electric field at the electron beam, which is located very near
the RF beam waist (i.e. ¥’ < z,). In this case R, = 0, w(y') =~ w,, and arctan(y'/z,) = 0
yielding

2 55! $2+zl2
:n,n,l(z’ y,vzl’t) = Eo,le (fz) H" (fz ) exp {——(—_2_—)}

0, o, W, i
, x
x exp {ut} cos (k,y - —2—) . (7)
For the TEMg g mode this becomes

s ro _ _(12+ZI2) k ,_1_7('
Ejoi(z,y,2',t) = E, exp o [P {wnt} cos | kry 5 ) (8)
o,l

The peak electric field of the TEMgo; mode along the resonator (y'-) axis is (in MKS units)

— Wo i
Epeak - Eo,l 'IDI(y-—,)
MoCWY Wol sin’(3) )(2’_ls!>
ef wi(y') ((1 — By cos())? e F (9)

where F is the peak normalized wave amplitude commonly used in the gyrotron literature, °
m, and e are the rest mass and charge (magnitude) of an electron, v is the relativistic fac-
tor, and B, and B are the electrons velocity perpendicular and parallel to the magnetic
field normalized to c, the speed of light. The parameter s is the harmonic number of the
beam-wave interaction for the case of the QOG and should be set to unity for the IREC
maser resonator. The angle v is the angle between the resonator and electron beam axes,

and should be set to 7 /2 for the QOG.

ITI. Ohmic Power Losses

To calculate the ohmic power lost in the resonator mirrors, consider a plane wave
incident on a semi-infinite planar conductor as shown in Fig. 3. Assuming that all field
quantities S vary in time as

S(x,t) = S(x)e™* (10)




Figure 3: A plane wave incident on a semi-infinite planar conductor.

and

Maxwell’s equations become

VxE
VxH
vV-D
vV.-B

Using a vector identity we obtain

VxVxE

-~ » U ™

NN NNNNN

—1wB

(iwe+0)E

V(V-E)- V’E




= ~-VE (20)
= —wuV x H, (21)

from which the wave equation follows:
V?E = wy (iwe + o) E. (22)
Similarly, one may derive the wave equation for H
V?H = twp (iwe + o) H. (23)
Region 1 (see Fig. 3) is free space, so that ¢ = 0, leading to
VZE1 = —w?po¢ Er. (24)

Picking the orientation of the electric field

El = i‘El(x)v (25)
the solution to Eq.(24) is
E = & {Efe™™ + Ef e} (26)
where
K = wlue, . (27)

In region 2 we assume we < o (i.e. the displacement current is negligible) yielding the

wave equation

V?Ez = iwucEs = 7’E2 (28)
where
_ 1+ . wya)‘“ 0
re—tt o4y (2 (29)
where § is the skin depth of the conductor. The solution to Eq.(28) is then
E: = #{Eje™™ + E;e™} (30)
= zE}e ™ (31)




since the electric field must be finite at y — oo. From Eq.(16) we have

VxH; =0E; =icEfe™ ™. (32)
Therefore
Hy = gH, (z) + :H,(y) = H}e ™ (33)
where
H} = -gE; (34)

and H,(z) = 0 since there is no z dependence. Applying the boundary equation that the

tangential part of the electric field is continuous at the conductor surface yields

EfY = Ef+Ef (35)
H} = —M(E*‘Jrﬁ:-) (36)
2 2 1 1 * h

Again using Eq.(16), we have for the individual plane waves travelling to the right and to

the left in region 1,

N
H}Y = -—(-i) Ef (37)
Ho
€ 1/2
Hf = (—‘o’) Er, (38)
Ho
and therefore
Hy = i (Hf e ™ + Hye™) . (39)

Applying this to the boundary condition that the tangential part of the magnetic intensity

must be continuous yields

1/2
H}y =Hf +H] = - (i—) (E,* - E;) : (40)
Using Eq.(36) and more algebra
4E}
E} =E} +Ef = ! (41)

T 24 06Z,(1 — 1)
where Z, = (y,/¢,)*/? is the impedance of free space.
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The time averaged power per unit area lost in the conductor (pq) is given by the real

part of the Poynting vector (N) evaluated at z = 0;

pa = R {{N)|z=0} (42)
where
1 .
(N)l:zo = 5E2xHp (43)
6 .
= g7 (L4 |Ef P (44)
4(1+i) E}
PR 1C e ) £ (45)
28 [(Z, +2/06) + 22
For reasonably good conductors ar.d frequencies not tc » high, the factor
1/2
2 _ (2“”’[") (46)
ab o
is small compared to Z, (= 377Q2) and the heating density becomes
(2£1)" o

In addition to being applicable to the case of a plane conductor, this equation is a good
estimate of the heating density for a curved conductor when the radius of curvature is
inuch larger than the wavelength of the radiation. Using Eq.(2) for a TEMg; mode at the

mirror we have
Wy i

oFF = 2 3 P {~r*/wl (d/2)} . (48)

Therefore, the power lost per mirror due to ohni:c heating in a mirror of radius a at position

dis
a
le‘minor = / pn?ﬂr dr
o

TE? w?, —2q?
0. 0, . . 9
1062 [l exP (w? (d/z))} (49)




1V. Stored Energy

In vacuum, the time-averag~d energy density is

1
u.—_%(E-D'JrB.H'):EE-D' (50)

The total stored energy in the resonator is twice the sto.ed energy due to the wave travelling

in one direction given by Eq.(2). For a TEMgo; mode this yields

Epos eow? E?, /d/2 J /a 27r2r dre_Qr.’,w‘:(y)
4 ~d/2 o wf(y)
re, E? w? d ( —2a?
= —2 2 |1 - —— . 51
1 - e () o
V. Ohmic Q
The ohmic @ of a cavity is defined as

WEstored -
= — 52
Qa P (52)

" Noting that power is lost in two mirrors, and using Eqgs.(49) and (51) we obtain

d -

Qo = 5 (nfpe0)"” (53)

where f is the frequency of the radiation.

VI. Resonator Heating

In this section we wish to calculate the time dependent rise in temperature of the
resonator mirrors. To do so, we solve the one-dimensional heat equation with appropriate

boundary conditions!!:

uz,t) — auz(z,t) = A (24)
PCo

u(z,0) = u, (55)

u,0,t) = 0 (56)

u(L,t) = 0 (57)

A = Fb(z) (58)




where u(z,t) is the temperature of the mirror at position z and time ¢, the subscripts of u
denote partial derivatives of u, the mirror is located between £ = 0 and z = L, F is the
flux incident on the mirror, and a = &/ (pc,) where p,c,, and & are the mass density, heat
capacity, and thermal conductivity of the mirror material.

The first step in solving this problem is to set 7 = A = 0 and separate variables
to find the eigenvalues and eigenvectors of the related homogeneous problem. Setting

u = X(z)T(t) and denotine derivatives by primes gives

j; );’(” = -\, (59)
Therefore
X"+XX =0 (66)
X0)=X(L) = 0 (61)
which has solutions
Xn(z) = cos(Apz) A, = ELE n=0,1,2,.... (62)
Now let A # 0 and try the solution
= Z;Tn(t)Xn(x) : (63)

Multiplying by u(z,t) and integrating yields

{To(t) = 1 ule,t)ds 61)
Tna(t) = 2_[0 u(z, )cos(ﬂi@)dm m=1,2,...
Next we expand
Allpey) = 2 4a()Xul2) - (65)
Inserting Eq.(58) gives
_ _F
do = _—Epc.p 66
2F (66)
gm = po L m=1,2,...
Therefore the differential equation reduces to
> X (T +aXT —g,) =0 (67)
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Table 1: Parameters for the quasioptical IREC maser experiment.

Mode TEMog,
Output power 15 MW
Frequency 280 GHz
Wavelength 1.1 mm
Magnetic field 6T

Electron beam energy 500 keV

Electron beam current 200 A

F 0.2
a= ,B_L/,B” 0.5
() 20°
) 12
which leads to
ug + ot n=0
I lexp(—A2at) - 1] n=1,2 (68)
—/\na[exp 2at) - 1] n=1,2,...
Thus the solution for the mirror temperature is
Ft 2FL &1 nwz ~n?r?at
U(.’l‘,t) = U, + ;C-;Z + . niz:‘ ;1-2- cOSs (—L—') [1 — exp (-——Lz—-)] . (69)

VII. The IREC Maser Resonator

In this section the formulae derived will be applied to the current design of the resonator
for the quasioptical IREC maser experiment. Representative experimental parameters are
given in Table 1. The theory necessary to optimize an IREC maser design is complicated
and will be addressed in future publications, however, let us pick F = 0.2 for this example.
This value is approximately twice the F value for optimum efficiency operation in a QOG
and is appropriate for the IREC maser since here the beam electrons interact only with

11




the RF fields propagating in the direction of the electron beam travel. Also picked are
values for the angle between the resonator and electron axes ¢ = 20° and the normal-
ized interaction length y = 12. Specifying the peak heating density at the mirror to be
150 kW/cm? determines the resonator mirror separation (81 ¢cm) and radius of curvature
(52 cm). The output coupling of 14% is picked to balance the input and output power
levels and determines the mirror radius of 3.0 cm. Assuming values for the conductivity
(3.6 x 107 siemens/m) and the skin depth (1.6 x 10~7 m), appropriate for copper, Eq.(49)
may be used to calculate the power lost per mirror (780 kW).

With the resonator parameters specified, it is a simple matter to apply the derived
formulae to obtain the peak electric field at the center of the resonator (Eq.(9)) E, =
1.1 MV/cm. Similarly, the energy stored in the resonator (Eq.(51)) is Egorea = 2.4 J, and
the ohmic quality factor (Eq.(53)) is Qo = 2.5 x 108. The resonator heating is calculated
assuming that the incident flux is F = 150 kW/cm?, the peak heating density. Eq.(69) then
gives a temperature rise at the surface of the mirror of approximately 150°C for a 2 usec
pulse. Standard values for copper of p = 8.93 g/cm?, ¢, = 0.385 J/(g°K), x = 3.5 W/cm°K,
a = 1.02 cm?/sec, and a mirror thickness of L = 1 cm were used in this calculation. It
should be noted that the number of terms necessary for the convergence of the sum in
Eq.(69) is approximately 1000. Figure 4 shows that at the end of 2 usec the temperature
rise in the mirror is confined to very near its surface. The parameters calculated for the

IREC maser resonator are summarized in Table 2.
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Mirror separation (d)
Mirror radius of curvature
Output coupling

Mirror radius

E,

W,
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Quality factor (diffraction, Qgq)

Quality factor (ohmic, Qq)

pnpeak

Ohmic power lost (per mirror)
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Table 2: Calculated parameters for the quasioptical IREC maser experiment.

81 cm

52 cm

14 %

3.0 cm

1.1 MV/cm
8.5 mm

1.8 cm

21 cm
66,000

2.5 x 10°
150 kW/cm?
780 kW
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Figure 4: Temperature rise in the resonator mirror calculated from a one-dimensional model

for an incident power flux (F) of 150 kW /cm? and a 2 usec pulse length.
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